Human Cartilage Engineering
- 1 May 1999
- journal article
- research article
- Published by Wolters Kluwer Health in Annals of Plastic Surgery
- Vol. 42 (5) , 509-513
- https://doi.org/10.1097/00000637-199905000-00008
Abstract
To date, many efforts to engineer cartilage have focused on matrix construction with the goal of producing a durable construct as cartilage replaces the resorbing matrix. However, the importance of matrix construction is at least matched by the challenge of efficient chondrocyte extraction, culture expansion, and prevention of dedif-ferentiation. This challenge is underscored by the large number of chondrocytes needed for a clinically significant construct such as an ear. Because human rib provides a large, readily available source of hyaline cartilage, the authors evaluated human rib chondrocyte extraction and found that maximum viable cell yield occurred after a 6-hour digestion. They also evaluated human microtic auricular remnant chondrocyte extraction and identified fibroblast contamination as a shortcoming of this potential source of chondrocytes. Initially, rib chondrocytes proliferated in vitro with a doubling time of approximately 1 week. As the cells were passaged, proliferation decreased such that the cells stopped proliferating and adopted a large, spindle-shaped morphology by passage 6. Interestingly, no increase in proliferation was noted when rib chondrocytes were stimulated with transforming growth factor beta 1, bone morphogenetic protein 2, and basic fibroblast growth factor. The major obstacles to the use of autologous rib chondrocytes in matrix construction are the low cell yield from a small piece of rib and the limited proliferation that these cells will undergo in vitro. Further investigation of culture systems and mitogenic cytokines may help resolve these limitations. Saadeh PB, Brent B, Mehrara BJ, Steinbrech DS, Ting V, Gittes GK, Longaker MT. Human cartilage engineering: chondrocyte extraction, proliferation, and characterization for construct development. Ann Plast Surg 1999;42:509–513Keywords
This publication has 0 references indexed in Scilit: