Abstract
Calcium is the most universal carrier of signals to cells. Chosen by evolution because of its peculiar flexibility as a ligand, it now regulates all important aspects of cell activity, beginning with the creation of new life at fertilization and ending with the dramatic event of apoptotic suicide at the end of the life cycle. The process of signal transduction by Ca2+ displays a number of properties that make it unique among all other carriers of signals: for instance, the ability to perform both a first messenger and a second messenger function, or the frequent activation of autoregulatory mechanisms. The aspect that distinguishes the Ca2+ signaling function most dramatically is ambivalence. Cells have an absolute dependence on the messenger function of Ca2+ in order to function properly and must control its homeostasis with precision to maintain its free concentration in their interior at the appropriate low level. Catastrophy, however, invariably follows whenever protracted failures of the control mechanisms lead to sustained Ca2+ overload.