Tripartite entanglement and quantum relative entropy

Abstract
We establish relations between tripartite pure state entanglement and additivity properties of the bipartite relative entropy of entanglement. Our results pertain to the asymptotic limit of local manipulations on a large number of copies of the state. We show that additivity of the relative entropy would imply that there are at least two inequivalent types of asymptotic tripartite entanglement. The methods used include the application of some useful lemmas that enable us to analytically calculate the relative entropy for some classes of bipartite states.