Biochemical Characterization of Phosphoryl Transfer Involving HPr of the Phosphoenolpyruvate-Dependent Phosphotransferase System in Treponema denticola, an Organism that Lacks PTS Permeases
- 21 December 2004
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 44 (2) , 598-608
- https://doi.org/10.1021/bi048412y
Abstract
Treponema pallidum and Treponema denticola encode within their genomes homologues of energy coupling and regulatory proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) but no recognizable homologues of PTS permeases. These homologues include (1) Enzyme I, (2) HPr, (3) two IIA(Ntr)-like proteins, and (4) HPr(Ser) kinase/phosphorylase (HprK). Because the Enzyme I-encoding gene in T. pallidum is an inactive pseudogene and because all other pts genes in both T. pallidum and T. denticola are actively expressed, the primary sensory transduction mechanism for signal detection and transmission appears to involve HprK rather than EI. We have overexpressed and purified to near homogeneity four of the five PTS proteins from T. denticola. Purified HprK phosphorylates HPr with ATP, probably on serine, while Enzyme I phosphorylates HPr with PEP, probably on histidine. Furthermore, HPr(His)-P can transfer its phosphoryl group to IIA(Ntr)-1. Factors and conditions regulating phosphoryl transfer prove to differ from those described previously for Bacillus subtilis, but cross-enzymatic activities between the Treponema, Salmonella, and Bacillus phosphoryl-transfer systems could be demonstrated. Kinetic analyses revealed that the allosterically regulated HPr kinase/phosphorylase differs from its homologues in Bacillus subtilis and other low G+C Gram-positive bacteria in being primed for kinase activity rather than phosphorylase activity in the absence of allosteric effectors. The characteristics of this enzyme and the Treponema phosphoryl-transfer chain imply unique modes of signal detection and sensory transmission. This paper provides the first biochemical description of PTS phosphoryl-transfer chains in an organism that lacks PTS permeases.Keywords
This publication has 8 references indexed in Scilit:
- Control of the Bacillus subtilis Antiterminator Protein GlcT by PhosphorylationJournal of Biological Chemistry, 2003
- Substrate Specificity of the Nonribosomal Peptide Synthetase PvdD fromPseudomonas aeruginosaJournal of Bacteriology, 2003
- Global control of sugar metabolism: a Gram-positive solutionAntonie van Leeuwenhoek, 2002
- Rapid orientated cloning in a shuttle vector allowing modulated gene expression inBacillus subtilisFEMS Microbiology Letters, 2001
- Specific interaction of the RNA-binding domain of the Bacillus subtilis transcriptional antiterminator GlcT with its RNA target, RAT 1 1Edited by M. GottesmanJournal of Molecular Biology, 1999
- Enzyme INtr from Escherichia coliJournal of Biological Chemistry, 1999
- Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcTMolecular Microbiology, 1997
- Nitrogen control in bacteriaMicrobiological Reviews, 1995