Elimination of Tec elements involves a novel excision process.

Abstract
Approximately 60,000 transposon-like elements of the Tec1 and Tec2 families excise en masse from the micronuclear genome during formation of a macronucleus in Euplotes crassus. The circular product has been shown previously to contain the element inverted repeats joined head to head. To elucidate the mechanism of Tec excision, we have further characterized the circular products. DNA sequence analysis of cloned inverted repeat junctions and of population of supercoiled Tec circles shows that the inverted repeat junctions consist of both copies of the target site duplication surrounding 10 additional bases. The 10 bp differs for each junction. We demonstrate that the circles are highly sensitive to S1, mung bean and Bal 31 nucleases, and the site of sensitivity maps to the junction. Alkaline gel electrophoresis indicates that the junction does not contain a nick or gap; thus, a likely explanation for the nuclease sensitivity is the existence of a heteroduplex DNA structure at the junction. On the basis of these results, we present a model of Tec excision and discuss the relationship of Tec excision to IES elimination and chromosome fragmentation in E. crassus.