Efficient DNA Fingerprinting of Clostridium botulinum Types A, B, E, and F by Amplified Fragment Length Polymorphism Analysis

Abstract
Amplified fragment length polymorphism (AFLP) analysis was applied to characterize 33 group I and 37 group II Clostridium botulinum strains. Four restriction enzyme and 30 primer combinations were screened to tailor the AFLP technique for optimal characterization of C. botulinum . The enzyme combination HindIII and HpyCH4IV, with primers having one selective nucleotide apiece (Hind-C and Hpy-A), was selected. AFLP clearly differentiated between C. botulinum groups I and II; group-specific clusters showed C. botulinum strains. In addition, group-specific fragments were detected in both groups. All strains studied were typeable by AFLP, and a total of 42 AFLP types were identified. Extensive diversity was observed among strains of C. botulinum type E, whereas group I had lower genetic biodiversity. These results indicate that AFLP is a fast, highly discriminating, and reproducible DNA fingerprinting method with excellent typeability, which, in addition to its suitability for typing at strain level, can be used for C. botulinum group identification.