Insulin resistance of gluconeogenic pathways in neonatal rats after prenatal ethanol exposure

Abstract
Alcohol exposure during pregnancy is associated with fetal growth restriction and programs the offspring to insulin resistance later in life. The underlying mechanisms are still uncertain, but a dysregulation of gluconeogenesis and adipose hormones may be contributory. Newborn rats from dams that had been given ethanol (EtOH) or water (controls) during pregnancy were studied. Adiponectin mRNA was determined in subcutaneous fat by RT-PCR, and serum adiponectin was measured by RIA. Subsets of rats were killed before and after intraperitoneal administration of insulin, to determine, by RT-PCR, the hepatic expression of gluconeogenic enzymes and that of the transcription factor peroxisome proliferator-activated receptor-coactivator (PGC)-1, which promotes gluconeogenesis. EtOH offspring had delayed hypoglycemic response to insulin but normal adiponectin mRNA and serum levels compared with controls. The inhibitory response of the gluconeogenic enzyme phospho enol- pyruvate carboxykinase (PEPCK) and PGC-1 mRNAs to insulin was blunted in EtOH offspring compared with controls. The data suggest that intrauterine EtOH exposure causes insulin resistance of genes for PGC-1 and PEPCK early in life.