Density matrix and spin-dependent correlations of normal liquid
- 1 April 1979
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 19 (7) , 3539-3551
- https://doi.org/10.1103/physrevb.19.3539
Abstract
The influence of spin-dependent correlations on the one-body density matrix of a Fermi system is explored, for a normal-state wave function in which differing Jastrow factors are assigned to pairs in spin-projection states ↑↑ and ↑↓. The structural results of Ristig and Clark for state-independent Jastrow correlations are generalized by appealing to the commutativity of the assumed correlation operators and the topological properties of the diagrammatic representations of cluster expansions of the density matrix and corresponding occupation probability. Application to liquid (or the electron gas) calls for suitable spin-dependent spatial distribution functions. Such inputs may be supplied by Fermi hypernetted-chain theory adapted to - dependent correlations. The required extension is carried out for the Krotscheck-Ristig version of the theory, resulting in two coupled nonlinear integral equations for theoretical determination of the experimentally accessible spin-dependent radial distribution functions and . Preliminary to a full implementation of this approach for liquid , the spin-dependent structure functions associated with a Jastrow factor of Schiff-Verlet type are determined.
Keywords
This publication has 40 references indexed in Scilit:
- Application of the method of correlated basis functions to nuclear matterPhysics Letters B, 1978
- Fermi-hypernetted-chain methods and the ground state of fermion matterPhysical Review A, 1977
- Optimal correlation function for Fermi HNC equationsPhysics Letters B, 1977
- Variational method for liquid3He. I. The Fermi hypernetted-chain approachJournal of Low Temperature Physics, 1977
- Constrained variational calculations on nuclear matter with state dependent correlationsPhysics Letters B, 1977
- Density matrix of quantum fluidsPhysical Review B, 1976
- Tensor Correlations in Nuclear Matter: Three-Body EffectsPhysical Review C, 1972
- Tensor Correlations in Nuclear MatterPhysical Review C, 1971
- Paired-Phonon Analysis for the Ground State and Low Excited States of Liquid HeliumPhysical Review B, 1969
- New method for the calculation of the pair correlation function. IPhysica, 1959