High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry

Abstract
We have used intramolecular cross-linking, MS, and sequence threading to rapidly identify the fold of a model protein, bovine basic fibroblast growth factor (FGF)-2. Its tertiary structure was probed with a lysine-specific cross-linking agent, bis(sulfosuccinimidyl) suberate (BS 3 ). Sites of cross-linking were determined by tryptic peptide mapping by using time-of-flight MS. Eighteen unique intramolecular lysine (Lys-Lys) cross-links were identified. The assignments for eight cross-linked peptides were confirmed by using post source decay MS. The interatomic distance constraints were all consistent with the tertiary structure of FGF-2. These relatively few constraints, in conjunction with threading, correctly identified FGF-2 as a member of the β-trefoil fold family. To further demonstrate utility, we used the top-scoring homolog, IL-1β, to build an FGF-2 homology model with a backbone error of 4.8 Å (rms deviation). This method is fast, is general, uses small amounts of material, and is amenable to automation.