Abstract
The concept of a mobile carrier combining reversibly with a substrate is considered as a possible mechanism for facilitated transport across biological membranes. The mathematical model is a system of three reaction diffusion equations with certain boundary conditions. Two limiting cases are discussed in detail: The case of a “thin” membrane where the diffusion of bound and unbound carrier from one surface to the other may be simulated by a single jump. If the diffusion rate of the substance to be transported is small, then an approximate stationary solution is derived using singular perturbation theory. Finally, the results of numerical simulations are presented for a wide range of parameters.