Abstract
Sequence data and evolutionary arguments suggest that a similarity may exist between the C-terminal end of glutaminyl-tRNA synthetase (GlnRS) and the catalytic domain of glutamine amidotransferases (GATs). If true, this would seem to imply that the amidation reaction of the Glu-tRNAGIn complex was the evolutionary precursor of the direct tRNAGIn aminoacylation pathway. Since the C-terminal end of GlnRS does not now have an important functional role, it can be concluded that this sequence contains vestiges that lead us to believe that it represents a palimpsest. This sequence still conserves the remains of the evolutionary transition: amidation reaction → aminoacylation reaction. This may be important in deciding which mechanism gave origin to the genetic code organization. These observations, together with results obtained by Gatti and Tzagoloff [J. Mol. Biol. (1991) 218: 557–568], lead to the hypothesis that the class I aminoacyl-tRNA synthetases (ARSs) may be homologous to the GATs of the trpG subfamily, while the class Il ARSs may be homologous to the GATs of the purF subfamily. Overall, this seems to point to the existence of an intimate evolutionary link between the proteins involved in the primitive metabolism and aminoacyl-tRNA synthetases.