Missing Massive Stars in Starbursts: Stellar Temperature Diagnostics and the Initial Mass Function
- 1 May 2004
- journal article
- research article
- Published by American Astronomical Society in The Astrophysical Journal
- Vol. 606 (1) , 237-257
- https://doi.org/10.1086/382776
Abstract
Determining the properties of starbursts requires spectral diagnostics of their ultraviolet radiation fields, to test whether very massive stars are present. We test several such diagnostics, using new models of line ratio behavior combining CLOUDY, Starburst99, and up-to-date spectral atlases. For six galaxies we obtain new measurements of He I 1.7 μm/Br10, a difficult to measure but physically simple (and therefore reliable) diagnostic. We obtain new measurements of He I 2.06 μm/Brγ in five galaxies. We find that He I 2.06 μm/Brγ and [O III]/Hβ are generally unreliable diagnostics in starbursts. The heteronuclear and homonuclear mid-infrared line ratios (notably [Ne III] 15.6 μm/[Ne II] 12.8 μm) consistently agree with each other and with He I 1.7 μm/Br10; this argues that the mid-infrared line ratios are reliable diagnostics of spectral hardness. In a sample of 27 starbursts, [Ne III]/[Ne II] is significantly lower than model predictions for a Salpeter initial mass function (IMF) extending to 100 M☉. Plausible model alterations strengthen this conclusion. By contrast, the low-mass and low-metallicity galaxies II Zw 40 and NGC 5253 show relatively high neon line ratios, compatible with a Salpeter slope extending to at least ~40-60 M☉. One solution for the low neon line ratios in the high-metallicity starbursts would be that they are deficient in 40 M☉ stars compared to a Salpeter IMF. An alternative explanation, which we prefer, is that massive stars in high-metallicity starbursts spend much of their lives embedded within ultracompact H II regions that prevent the near- and mid-infrared nebular lines from forming and escaping. This hypothesis has important consequences for starburst modeling and interpretation.Keywords
All Related Versions
This publication has 89 references indexed in Scilit:
- Massive Stars in the Arches ClusterThe Astrophysical Journal, 2002
- The stellar content, metallicity and ionization structure of HII regionsAstronomy & Astrophysics, 2002
- On the Primordial Helium Content: Cosmic Microwave Background and Stellar ConstraintsThe Astrophysical Journal, 2002
- An Empirical Test and Calibration of HiiRegion DiagnosticsThe Astrophysical Journal, 2000
- High-Resolution Radio Maps of Wolf-Rayet Galaxies: Optically Thick H [CSC]ii[/CSC] Regions?The Astronomical Journal, 2000
- The Circumnuclear Starburst in NGC 7552: First Results from Near‐Infrared Spectral SynthesisThe Astrophysical Journal, 1997
- The Infrared Nucleus of the Wolf-Rayet Galaxy Henize 2-10.The Astronomical Journal, 1997
- Long-slit spectroscopy of the central regions of starburst galaxies - Henize 2-10 and Markarian 52The Astronomical Journal, 1992
- Effects of silicate-graphite dust in H II regionsThe Astrophysical Journal, 1989
- Spatial and spectral interpretation of a bright filament in the Cygnus LoopThe Astrophysical Journal, 1988