Missing Massive Stars in Starbursts: Stellar Temperature Diagnostics and the IMF

Abstract
Determining the properties of starbursts requires spectral diagnostics of their ultraviolet radiation fields, to test whether very massive stars are present. We test several such diagnostics, using new models of line ratio behavior combining Cloudy, Starburst99 and up-to-date spectral atlases. For six galaxies we obtain new measurements of HeI 1.7 um / Brackett 10, a difficult to measure but physically simple (and therefore reliable) diagnostic. We obtain new measurements of HeI 2.06 um / Brackett gamma in five galaxies, and find that it and [OIII]/Hbeta are generally unreliable diagnostics in starbursts. The heteronuclear and homonuclear mid--infrared line ratios (notably [NeIII] 15.6 um / [NeII] 12.8 um) consistently agree with each other and with HeI 1.7 um / Br10; this argues that the mid-infrared line ratios are reliable diagnostics of spectral hardness. In a sample of 27 starbursts, [NeIII]/[NeII] ratios are significantly less excited than model predictions for a Salpeter IMF extending to 100 solar masses. Plausible model alterations strengthen this conclusion. By contrast, the low-mass and low-metallicity galaxies II Zw 40 and NGC 5253 show relatively high neon line ratios, compatible with a Salpeter slope extending to at least 40--60 Msol. One solution for the low neon line ratios in the high--metallicity starbursts would be that they are deficient in >40 Msol stars compared to a Salpeter IMF. An alternative explanation, which we prefer, is that massive stars in high--metallicity starbursts spend much of their lives embedded within ultra--compact HII regions that prevent the near- and mid-infrared nebular lines from forming and escaping. This hypothesis has important consequences for starburst modelling and interpretation.

This publication has 0 references indexed in Scilit: