The Effect of Midazolam and Propofol on Interleukin-8 from Human Polymorphonuclear Leukocytes

Abstract
Anesthetics and sedatives contribute to postoperative immunosuppression. Interleukin-8 (IL-8) is a chemotactic and activating factor that mediates neutrophil adhesion and margination and is essential for host defense. We investigated the effect of anesthetics on isolated human polymorphonuclear leukocyte production of IL-8. Healthy human polymorphonuclear leukocytes were isolated using a single-step density gradient and stimulated with lipopolysaccharide in the presence of varying concentrations of propofol or midazolam for up to 20 h. IL-8 was measured in both culture supernatants and cell lysates using enzyme immunoassay, and IL-8 mRNA in cells was measured using Northern blotting and phosphorimaging. Data were analyzed using Kruskal-Wallis analysis of variance or the Mann-Whitney U-test as appropriate. Lipopolysaccharide increased extracellular accumulation of interleukin-8, which was suppressed by both propofol (P = 0.025) and midazolam (P = 0.028). However, intracellular IL-8 increased with exposure to lipopolysaccharide (P = 0.028) and remained increased with both anesthetics. Northern blot analysis also revealed increased IL-8 mRNA levels in the presence of both midazolam and propofol, which was confirmed by molecular imaging. These data strongly suggest that the anesthetics modulate transport or secretion of IL-8 protein from the cell. Suppression of IL-8 by anesthetics and sedatives may predispose postoperative and intensive care patients to infection. Anesthesia causes immune suppression and alters neutrophil function. We investigated the effect of propofol and midazolam on interleukin-8, a neutrophil chemotactic agent in human neutrophils. Both anesthetics decreased extracellular interleukin-8 accumulation, but intracellular levels and mRNA remained high. This suggests that propofol and midazolam alter interleukin-8 secretion from cells.