Ultrastructural and Immunocytochemical Study of the Uptake and Distribution of Bacterial Lipopolysaccharide in Human Monocytes
- 1 October 1990
- journal article
- research article
- Published by Oxford University Press (OUP) in Journal of Leukocyte Biology
- Vol. 48 (4) , 316-332
- https://doi.org/10.1002/jlb.48.4.316
Abstract
Interaction of bacterial lipopolysaccharide (LPS) with monocytes stimulates production of a variety of mediators that are involved in the pathogenesis of septic shock and wound repair. We report here the mechanisms of LPS uptake and intracellular distribution of LPS in human monocytes. Ficoll-Hypaque-purified peripheral mononuclear cells (PBMC) were exposed to LPS from rough Escherichia coli (J5) or to biotin-conjugated LPS (biotin-LPS) from smooth E. coli (0111:B4), or to fluorescein isothiocyanate-conjugated LPS of E. coli (055:B5) at 37° for various times and processed for electron microscopy, immunocytochemistry, and flow cytometry. Monocytes were identified by the presence of numerous cytoplasmic peroxidase-positive granules or by monoclonal antibodies against monocyte. LPS micelles were identified by their specific bilayer structure, staining of horseradish peroxidase reaction product, or colloidal gold using biotin-LPS or a monoclonal antibody to LPS. Binding of LPS to cell surface was observed 5 min after incubation with LPS. Intracellular localization of LPS micelles was found 30 min following exposure to LPS. Prolonged incubation with LPS increased intracellular LPS. Intracellulary, LPS micelles were found in large membrane-bound vacuoles, in small vesicles, and in the cytoplasm and nucleus. They were also observed in association with the cytomembrane of various organelles. The overall results indicate that LPS may be taken up by monocytes by direct passive diffusion through ruptures of plasma membrane, pinocytosis, and phagocytosis, involving specific and/or nonspecific binding, and suggest that peripheral blood monocytes play an important role in clearance of LPS; that LPS may have broad effects on cell functions; and that the nonspecific binding to various cytomembranes may be destructive to cell organelles and cells in general.Keywords
This publication has 25 references indexed in Scilit:
- Ultrastructural localization of several phosphatases with cerium.Journal of Histochemistry & Cytochemistry, 1983
- LIPOPOLYSACCHARIDE MEDIATED BOVINE ENDOTHELIAL-CELL INJURY INVITRO1983
- The Role of Macrophages in the Chemotactic Response of Polymorphonuclear Leukocytes to Bacterial LipopolysaccharidesExperimental Biology and Medicine, 1980
- The Clearance, Tissue Distribution, and Cellular Localization of Intravenously Injected Lipopolysaccharide in RabbitsThe Journal of Immunology, 1979
- Membrane perturbation of macrophages stimulated by bacterial lipopolysaccharideBiochemical and Biophysical Research Communications, 1979
- Ultrastructural localisation of lipopolysaccharide-binding sites with peroxidase-conjugated lipopolysaccharidesJournal of Immunological Methods, 1979
- Mild alkaline hydrolysis of lipopolysaccharide endotoxin enhances its mitogencity for murine B cellsInfection and Immunity, 1977
- Outer membrane of Salmonella typhimurium. Electron spin resonance studiesBiochimica et Biophysica Acta (BBA) - Biomembranes, 1977
- The structure of the cell wall of the Gram-negative bacterium Proteus vulgarisJournal of Molecular Biology, 1967
- THF EARLY STAGES OF ABSORPTION OF INJECTED HORSERADISH PEROXIDASE IN THE PROXIMAL TUBULES OF MOUSE KIDNEY: ULTRASTRUCTURAL CYTOCHEMISTRY BY A NEW TECHNIQUEJournal of Histochemistry & Cytochemistry, 1966