Evidence for the formation of a heterotrimeric complex of leukaemia inhibitory factor with its receptor subunits in solution

Abstract
Leukaemia inhibitory factor (LIF) is a polyfunctional cytokine that is known to require at least two distinct receptor components (LIF receptor α-chain and gp130) in order to form a high-affinity, functional, receptor complex. Human LIF binds with unusually high affinity to a naturally occurring mouse soluble LIF receptor α-chain, and this property was used to purify a stable complex of human LIF and mouse LIF receptor α-chain from pregnant-mouse serum. Recombinant soluble human gp130 was expressed, with a FLAG® epitope (DYKDDDDK) at the N-terminus, in the methylotropic yeast Pichia pastoris and purified using affinity chromatography. The formation of a trimeric complex in solution was established by native gel electrophoresis, gel-filtration chromatography, sedimentation equilibrium analysis, surface plasmon resonance spectroscopy and chemical cross-linking. The stoichiometry of this solution complex was 1:1:1, in contrast with that of the complex of interleukin-6, the interleukin-6-specific low-affinity receptor subunit and gp130, which is 2:2:2.