Multilevel Selection 2: Estimating the Genetic Parameters Determining Inheritance and Response to Selection
- 1 January 2007
- journal article
- research article
- Published by Oxford University Press (OUP) in Genetics
- Vol. 175 (1) , 289-299
- https://doi.org/10.1534/genetics.106.062729
Abstract
Interactions among individuals are universal, both in animals and in plants and in natural as well as domestic populations. Understanding the consequences of these interactions for the evolution of populations by either natural or artificial selection requires knowledge of the heritable components underlying them. Here we present statistical methodology to estimate the genetic parameters determining response to multilevel selection of traits affected by interactions among individuals in general populations. We apply these methods to obtain estimates of genetic parameters for survival, days in a population of layer chickens with high mortality due to pecking behavior. We find that heritable variation is threefold greater than that obtained from classical analyses, meaning that two-thirds of the full heritable variation is hidden to classical analysis due to social interactions. As a consequence, predicted responses to multilevel selection applied to this population are threefold greater than classical predictions. This work, combined with the quantitative genetic theory for response to multilevel selection presented in an accompanying article in this issue, enables the design of selection programs to effectively reduce competitive interactions in livestock and plants and the prediction of the effects of social interactions on evolution in natural populations undergoing multilevel selection.Keywords
This publication has 50 references indexed in Scilit:
- Multilevel Selection 1: Quantitative Genetics of Inheritance and Response to SelectionGenetics, 2007
- Multilevel selection: the evolution of cooperation in non‐kin groupsPopulation Ecology, 2005
- Genetic (co)variation in harvest body weight and survival in Penaeus (Litopenaeus) vannamei under standard commercial conditionsAquaculture, 2005
- Reviving the superorganismJournal of Theoretical Biology, 1989
- Lack of Response byTilapia niloticato Mass Selection for Rapid Early GrowthTransactions of the American Fisheries Society, 1988
- A theory of natural selection incorporating interaction among individuals. II. Use of related groupsJournal of Theoretical Biology, 1981
- A theory of natural selection incorporating interaction among individuals. I. The modeling processJournal of Theoretical Biology, 1981
- The theory of games and the evolution of animal conflictsJournal of Theoretical Biology, 1974
- The genetical evolution of social behaviour. IIJournal of Theoretical Biology, 1964
- The genetical evolution of social behaviour. IJournal of Theoretical Biology, 1964