The carboxy‐terminal peptide of detyrosinated α tubulin provides a minimal system to study the substrate specificity of tubulin–tyrosine ligase

Abstract
The ATP-dependent tubulin-tyrosine ligase (TTL) restores the carboxy-terminal tyrosine of alpha tubulin in alpha beta tubulin that has been previously detyrosinated. Here we show that the carboxy-terminal tetradecapeptide of detyrosinated alpha tubulin is used by TTL as a substrate, albeit at 50-fold lower efficiency than alpha beta tubulin. The minimal system provided by the TTL/peptide combination mirrors the TTL/tubulin system in all aspects tested, and shows a pronounced substrate inhibition. Synthetic peptides varying in length and/or containing single amino acid replacements were used to analyze the TTL specificity for the carboxy-terminal sequence of detyrosinated alpha tubulin. Peptides ending like alpha tubulin with the sequence Gly-Glu-Glu are optimally tyrosinated once a peptide length of 12 residues is reached. Position -1 of this recognition sequence, to which the tyrosine is added, must be glutamic acid. Position -2 accepts only an acidic amino acid but glutamic acid is by far preferred over aspartic acid. These results explain why a subpopulation of brain alpha tubulin, which ends with the sequence Gly-Glu, is not tyrosinated by TTL. The carboxy-terminal dodecapeptide of brain alpha tubulin with its polyglutamyl side-chain on position -6 shows the same substrate activity as the corresponding synthetic peptide lacking the side-chain. We discuss the substrate specificity of TTL for different alpha tubulins and speculate why tubulin is a better substrate than the optimal peptide covering the carboxy-terminal of detyrosinated alpha tubulin.