Predictors of Outcome of Epilepsy Surgery: Multivariate Analysis with Validation
- 1 September 1996
- Vol. 37 (9) , 814-821
- https://doi.org/10.1111/j.1528-1157.1996.tb00033.x
Abstract
To identify predictors of outcome of epilepsy surgery, using the Duke experience, applying multivariate analysis and validation techniques. To compare the results of different modeling algorithms. Few previous studies have reported multivariate analysis, or validated their results. Records of 116 patients with focal resections for intractable epilepsy from January 1, 1980 through June 30, 1989 were analyzed. Primary outcome variable was patient's condition in second postoperative year: seizure free (except auras), or not. Three predictors of biologic interest were specified a priori for confirmatory analysis. Additional predictors were considered within exploratory analysis. Logistic regression techniques were applied to assess relations with pre- and postoperative predictors. Internal validity was assessed by repeated random selection of training and validation samples, used in conjunction with bootstrap techniques. By using multivariate analysis, percentage of epileptic EEG activity arising from the site of resection and either imaging localization or lack of use of invasive monitoring were the only statistically significant preoperative predictors for good outcome at 2 years. Presence of seizures within 2 months of surgery was a significant postoperative predictor for a poor outcome. Adding more variables did not result in significantly improved models. Use of validation techniques reduced the degree of optimism in the predictive value of the models. Pooling of data from multiple institutions is needed to attain the large sample sizes needed for multivariate analysis with validation.Keywords
This publication has 15 references indexed in Scilit:
- Natural History of Recurrent Seizures After Resective Surgery for EpilepsyEpilepsia, 1991
- Intractable Partial Epilepsy: Evaluation and TreatmentMayo Clinic Proceedings, 1990
- Flexible regression models with cubic splinesStatistics in Medicine, 1989
- Surgical therapy for medically intractable epilepsyJournal of Neurosurgery, 1987
- Multidisciplinary prediction of seizure relief from cortical resection surgeryAnnals of Neurology, 1986
- Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical AccuracyStatistical Science, 1986
- Regression modelling strategies for improved prognostic predictionStatistics in Medicine, 1984
- Estimating the Error Rate of a Prediction Rule: Improvement on Cross-ValidationJournal of the American Statistical Association, 1983
- Splines As a Useful and Convenient Statistical ToolThe American Statistician, 1979
- Measures of Association for Cross Classifications, IV: Simplification of Asymptotic VariancesJournal of the American Statistical Association, 1972