The application of turbulence theory to the formulation of subgrid modelling procedures

Abstract
The problem of subgrid modelling, that is, of representing energy transfers from large to small eddies in terms of the large eddies only, must arise in any large eddy simulation, whether the equations of motion are open or direct (unaveraged) or closed (averaged). Models for closed calculations are derived from classical closures, and these are used to determine the effect of filter shape, grid-scale spectrum and grid-scale anisotropy on the effective eddy viscosity: the Leonard or resolvable-scale stress is calculated separately and is found to account for 14% of the total drain in a typical high Reynolds number case.The validity of using these eddy viscosities in an open calculation is considered. It is concluded that this is not unreasonable, but that the simulation would be much improved if the gross drain could be separated into net drain and backscatter.