Abstract
We investigate, by numerically calculating the charge stiffness, the effects of random diagonal disorder and electron-electron interaction on the nature of the ground state in the 2D Hubbard model through the finite-size exact diagonalization technique. By comparing with the corresponding 1D Hubbard model results and by using heuristic arguments we conclude that it is unlikely that there is a 2D metal-insulator quantum phase transition, although the effect of interaction in some range of parameters is to substantially enhance the noninteracting charge stiffness.