Screening of Dirac flavor structure in the seesaw and neutrino mixing

Abstract
We consider the mechanism of screening of the Dirac flavor structure in the context of the double seesaw mechanism. As a consequence of screening, the structure of the light neutrino mass matrix, m_\nu, is determined essentially by the structure of the (Majorana) mass matrix, M_S, of new super-heavy (Planck scale) neutral fermions S. We calculate effects of the renormalization group running in order to investigate the stability of the screening mechanism with respect to radiative corrections. We find that screening is stable in the supersymmetric case, whereas in the standard model it is unstable for certain structures of M_S. The screening mechanism allows us to reconcile the (approximate) quark-lepton symmetry and the strong difference of the mixing patterns in the quark and lepton sectors. It opens new possibilities to explain a quasi-degenerate neutrino mass spectrum, special ``neutrino'' symmetries and quark-lepton complementarity. Screening can emerge from certain flavor symmetries or Grand Unification.

This publication has 0 references indexed in Scilit: