Bayesian indoor positioning systems

Abstract
In this paper, we introduce a new approach to location estimation where, instead of locating a single client, we simultaneously locate a set of wireless clients. We present a Bayesian hierarchical model for indoor location estimation in wireless networks. We demonstrate that our model achieves accuracy that is similar to other published models and algorithms. By harnessing prior knowledge, our model eliminates the requirement for training data as compared with existing approaches, thereby introducing the notion of a fully adaptive zero profiling approach to location estimation.

This publication has 23 references indexed in Scilit: