Abstract
An efficient probabilistic algorithm for the concurrent mapping and localization problem that arises in mobile robotics is presented. The algorithm addresses the problem in which a team of robots builds a map on-line while simultaneously accommodating errors in the robots’ odometry. At the core of the algorithm is a technique that combines fast maximum likelihood map growing with a Monte Carlo localizer that uses particle representations. The combination of both yields an on-line algorithm that can cope with large odometric errors typically found when mapping environments with cycles. The algorithm can be implemented in a distributed manner on multiple robot platforms, enabling a team of robots to cooperatively generate a single map of their environment. Finally, an extension is described for acquiring three-dimensional maps, which capture the structure and visual appearance of indoor environments in three dimensions.

This publication has 35 references indexed in Scilit: