A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov
- 24 October 1962
- journal article
- research article
- Published by Cambridge University Press (CUP) in Mathematical Proceedings of the Cambridge Philosophical Society
- Vol. 58 (4) , 694-702
- https://doi.org/10.1017/s030500410004072x
Abstract
The second method of Liapunov is a useful technique for investigating the stability of linear and non-linear ordinary differential equations. It is well known that the second method of Liapunov, when applied to linear differential equations with real constant coefficients, gives rise to sets of necessary and sufficient stability conditions which are alternatives to the well-known Routh-Hurwitz conditions. In this paper a direct proof of the Routh-Hurwitz conditions themselves is given using Liapunov's second method. The new proof is ‘elementary’ in that it depends on the fundamental concept of stability associated with Liapunov's second method, and not on theorems in the complex integral calculus which are required in the usual proofs. A useful by-product of this new proof is a method of determining the coefficients of a linear differential equation with real constant coefficients in terms of its Hurwitz determinants.Keywords
This publication has 4 references indexed in Scilit:
- Über die algebraischen Kriterien für die Stabilität von RegelungssystemenMathematische Annalen, 1959
- Ein Verfahren zur Stabilitätsfrage bei Matrizen-EigenwertproblemenZeitschrift für angewandte Mathematik und Physik, 1956
- Problème général de la stabilité du mouvementAnnales de la faculté des sciences de Toulouse Mathématiques, 1907
- Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitztMathematische Annalen, 1895