Unified Description of Static and Dynamic Scaling for Kinetic Cluster Formation
- 22 October 1984
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review Letters
- Vol. 53 (17) , 1653-1656
- https://doi.org/10.1103/physrevlett.53.1653
Abstract
A scaling theory is developed for aggregation by means of kinetic clustering of clusters. A global picture of static and dynamic critical properties emerges, whereby the dynamic critical exponent can be related to the fractal dimension. Furthermore, the growth process is described in terms of a purely kinetic model. The scaling predictions agree well with numerical results.Keywords
This publication has 22 references indexed in Scilit:
- Computer simulation of a model for irreversible gelationJournal of Physics A: General Physics, 1983
- Mean-Field Theory for Diffusion-Limited Cluster FormationPhysical Review Letters, 1983
- Diffusion-controlled cluster formation in 2—6-dimensional spacePhysical Review A, 1983
- Statistical mechanics of red blood cell aggregation: The distribution of rouleaux in thermal equilibriumJournal of Statistical Physics, 1982
- Self-similarity and a phase-transition-like behavior of a random growing structure governed by a nonequilibrium parameterPhysical Review A, 1982
- Percolation, Droplet Models, and Spinodal PointsPhysical Review Letters, 1981
- Diffusion-Limited Aggregation, a Kinetic Critical PhenomenonPhysical Review Letters, 1981
- Measurement of the Cluster Size Distributions for High Functionality Antigens Cross-Linked by AntibodyMacromolecules, 1980
- Long-range correlations in smoke-particle aggregatesJournal of Physics A: General Physics, 1979
- Theory of dendritic growth—I. Elements of a stability analysisActa Metallurgica, 1978