Evolution of mitochondrial DNA in Drosophila subobscura
Open Access
- 1 November 1986
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 83 (22) , 8649-8653
- https://doi.org/10.1073/pnas.83.22.8649
Abstract
The colonization of the New World by the Palearctic species Drosophila subobscura was first detected in 1978 in South America and around 1982 in western North America. The ensuing dramatic expansion of the species, in territory as well as numbers, provides an opportunity for studying evolution in a scale rarely possible. We have used 10 restriction endonucleases to analyze the mitochondrial DNA (mtDNA) of individuals from 23 widely dispersed localities. Only two mtDNA composite morphs have been detected in the Americas. None of the two morphs has been found in Africa, and only one in the Atlantic islands; but both are widespread in Europe, which provides no clue of the precise geographic origin of the colonizers. The amount of nucleotide-substitution polymorphism detected in D. subobscura is typical for animals, but it is greater in the Old than in the New World, presumably due to the recent colonization by a limited number of colonizers. Assuming standard evolutionary rates of mtDNA base substitution, the mtDNA morphs found in D. subobscura can be traced to a single one that existed no less than one million years ago. We argue against the inference that the D. subobscura flies now living descend from only one or a few females that lived at that time. This type of inference, which we call the "Mother Eve hypothesis", has been made to conclude that the human population went through a severe constriction about 200,000 years ago, so that all living humans descend from only one or a few women who lived at that time. The Mother Eve hypothesis is fallacious.Keywords
This publication has 24 references indexed in Scilit:
- Mitochondrial DNA evolution in themelanogaster species subgroup ofDrosophilaJournal of Molecular Evolution, 1986
- Dating of the human-ape splitting by a molecular clock of mitochondrial DNAJournal of Molecular Evolution, 1985
- Demographic influences on mitochondrial DNA lineage survivorship in animal populationsJournal of Molecular Evolution, 1984
- Molecular clock of silent substitution: At least six-fold preponderance of silent changes in mitochondrial genes over those in nuclear genesJournal of Molecular Evolution, 1982
- Mitochondrial DNA sequences of primates: Tempo and mode of evolutionJournal of Molecular Evolution, 1982
- Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis.Proceedings of the National Academy of Sciences, 1980
- Mathematical model for studying genetic variation in terms of restriction endonucleases.Proceedings of the National Academy of Sciences, 1979
- Rapid evolution of animal mitochondrial DNA.Proceedings of the National Academy of Sciences, 1979
- Estimation of DNA sequence divergence from comparison of restriction endonuclease digestsNucleic Acids Research, 1977