An analytical equation of state for the hard-core Yukawa fluid
- 1 February 1997
- journal article
- research article
- Published by Taylor & Francis in Molecular Physics
- Vol. 90 (3) , 373-380
- https://doi.org/10.1080/002689797172480
Abstract
An analytic equation of state for the hard core Yukawa fluid is presented. This explicit, nonempirical equation of state is based on the inverse temperature expansion of the free energy from the mean-spherical approximation (MSA). This equation of state yields an excellent description of the pressure when compared with simulation results. The critical point properties obtained using this equation of state are almost identical to those obtained from the exact MSA. The vapour-liquid coexistence is also studied; the resulting phase diagram agrees very well with the result from the Gibbs ensemble simulation, except in the vicinity of the critical point.Keywords
This publication has 41 references indexed in Scilit:
- Mean Spherical Approximation Solution of Ornstein-Zernike Equation in a Charged Hard Sphere System with Screened Coulombic InteractionsJournal of the Physics Society Japan, 1985
- Solution of the Ornstein-Zernike equation for a multicomponent system with Yukawa closureMolecular Physics, 1981
- Solution of the Ornstein-Zernike equation for a mixture of hard ions and Yukawa closureJournal of Statistical Physics, 1980
- Solution of the Ornstein-Zernike equation with Yukawa closure for a mixtureJournal of Statistical Physics, 1978
- Equation of state of a hard-core fluid with a Yukawa tailMolecular Physics, 1978
- Solution of the Yukawa closure of the Ornstein-Zernike equationJournal of Statistical Physics, 1977
- Ornstein-Zernike equation for a two-Yukawac(r) with core conditionMolecular Physics, 1976
- Ornstein-Zernike equation with core condition and direct correlation function of Yukawa formMolecular Physics, 1976
- The radial distribution function for a fluid of hard spheres at high densitiesMolecular Physics, 1973
- Mean Spherical Model for Lattice Gases with Extended Hard Cores and Continuum FluidsPhysical Review B, 1966