Effect of dietary tryptophan on muscle, liver and whole-body protein synthesis in weaned piglets: relationship to plasma insulin
Open Access
- 1 November 1991
- journal article
- Published by Cambridge University Press (CUP) in British Journal of Nutrition
- Vol. 66 (3) , 423-435
- https://doi.org/10.1079/bjn19910045
Abstract
Two experiments were carried out with piglets, 3–5 kg live weight, to evaluate the effects of feeding a tryptophan (TRP)-deficient diet for 2 weeks on protein synthesis rates measured in vivo 2 h after a meal. In the first experiment on twenty piglets fed on 250 g protein/kg diets, TRP deficiency (0.77 g/16 g nitrogen) as compared with adequacy (1.17 g/16 g N) significantly decreased feed intake, growth performance and fractional protein synthesis rates (FSR), without variation of RNA in longissimus dorsi (LD) and with parallel increases in RNA in semitendinosus (ST) muscle and liver. In the second experiment thirty-two piglets were tube-fed deficient and adequate diets at the two feeding levels (LF) previously achieved. Both TRP and LF significantly increased growth performance and FSR, but not RNA, in LD and ST muscle, with a trend to a synergy between the two factors (TRP x LF interaction). In another muscle, trapezius (TR), the same interaction was only apparent in RNA content. Among the three muscles it was in LD that FSR was the most responsive to dietary TRP (significant muscle x TRP interaction). In the liver the TRP x LF interaction on FSR and not RNA was the major significant effect, indicating that higher TRP and higher LF were both required to get the maximum protein synthesis rate. At 30 min after a meal the same significant interaction effect was shown on plasma glucose, whilst the higher LF increased plasma insulin with both diets. After a further 30 min the appearance of a similar significant effect of the TRP x LF interaction on plasma insulin resulted from its abatement when the deficient diet had been fed at high LF. These results suggest that dietary TRP deficiency decreased muscle and liver protein synthesis rates in relation to a decrease in the post-prandial release of insulin following a decreased rate of nutrient absorption.Keywords
This publication has 31 references indexed in Scilit:
- Contribution of liver, skin and skeletal muscle to whole-body protein synthesis in the young lambBritish Journal of Nutrition, 1988
- Characterization of Insulin Binding to Slices of Slow and Fast Twitch Skeletal Muscles in the RabbitHormone and Metabolic Research, 1986
- The Differential Effect of Intragastric and Intravenous Tryptophan on Plasma Glucose, Insulin, Glucagon, GLI and GIP in the Fasted RatHormone and Metabolic Research, 1984
- Effects of Fasting and Refeeding on Insulin Binding to Liver Plasma Membranes and Hepatocytes from Normal RatsHormone and Metabolic Research, 1981
- Effects of changes in the intakes of protein and non-protein energy on whole-body protein turnover in growing pigsBritish Journal of Nutrition, 1981
- Protein turnover in growing pigs. Effects of age and food intakeBritish Journal of Nutrition, 1980
- Influence de l'hyperinsulinémie sur les récepteurs d'insuline dans le foie du rat en croissance soumis à une restriction énergétiqueReproduction Nutrition Développement, 1980
- Solubilisation des protéines de poisson, supplémentation en tryptophane et valeur alimentaire pour le porceletAnimal Research, 1978
- Influence d'un excès d'insuline sur la composition corporelle et les teneurs en acides aminés libres du sang, du foie et du muscle du rat en croissance soumis ou non à une restriction azotéeAnnales de Biologie Animale Biochimie Biophysique, 1977
- CONSÉQUENCES D'UNE DÉFICIENCE DU RÉGIME EN TRYPTOPHANE CHEZ LE PORC SUR LE NIVEAU D'INGESTION ET LES PERFORMANCES DE CROISSANCEAnimal Research, 1976