Intra-arterial delivery of endostatin gene to brain tumors prolongs survival and alters tumor vessel ultrastructure

Abstract
Glioblastoma multiforme (GBM) is an incurable malignant brain tumor, usually fatal within 1 year of diagnosis. Using a syngeneic rat 9L gliosarcoma model, we have developed a novel drug delivery method in which naked plasmid DNA is selectively targeted to brain tumors via intra-arterial injection. Using a plasmid encoding the antiangiogenic endostatin, transgene expression can be detected in tumor cells in vivo, and therapeutic efficacy is observed. Administration of this plasmid resulted in an 80% tumor volume reduction 1 week after treatment and enhanced survival time by up to 47%. Treated tumors exhibited a 40% decrease in the number of tumor vessels; ultrastructural analysis of remaining tumor vessels demonstrated a number of changes including markedly narrowed or collapsed lumens. We conclude that intra-arterial injection of plasmids selectively targets therapeutic genes to CNS neoplasms. This method of gene therapy holds promise for the treatment of these highly malignant brain tumors.