Nonlocal radial dependence of laser-induced molecular reorientation in a nematic liquid crystal: theory and experiment

Abstract
We present a detailed theoretical calculation, with experimental verification, of the nonlocal molecular reorientation of the nematic-liquid-crystal director axis induced by a cw Gaussian laser beam. The natures of the torque balance equations and the solutions are significantly different for normally and nonnormally incident laser beams. The nonlocal effects resulting from molecular correlation effects are particularly important for laser spot sizes that are different (smaller or larger) from the sample thickness. Experimental measurements for the transverse dependence of the molecules and the dependence of the Freedericksz threshold as a function of the laser beam sizes are in excellent agreement with theoretical results. We also comment on the effect of these nonlocal effects on transverse optical bistability.