Abstract
The aim of the present work was to disclose, through pharmacological activation of an isolated central nervous system maintained in vitro, spinal locomotor and respiratory-like activities inferred from an in vivo rabbit preparation. In a brainstem-spinal cord preparation in neonatal rats (0-3 days old), medullary respiratory activity occurred spontaneously in the cervical ventral roots. During 5-hydroxytryptophan (5-HTP) superfusion (0.2 mM), a slower rhythm with longer burst duration developed in the same ventral roots, with the pre-existing long-lasting slow bursting (LLSB) activity. At the same time, locomotor bursts were recorded from lumbar ventral roots. The LLSB activity was mainly recorded in cervical ventral roots, but they could also be encountered at the lumbar level, where they were eliminated after thoracic transection. The LLSB activity and the locomotor bursting were maintained after a C1 or C2 spinal transection, whereas medullary activity disappeared. Bilateral recording of the three types of rhythmic activity demonstrated that the LLSB activity and the medullary respiratory bursting typically displayed a synchronous bilateral coupling, whereas at caudal levels an alternate bilateral pattern was the rule for locomotor activity. Lactic acid could reinduce LLSB activity if introduced after it had just disappeared during the washout phase following 5-HTP superfusion. These results strongly suggest that the LLSB activity that originates from cervical generators belongs to the respiratory system, and not to locomotor activity. Finally, similar results in an in vivo rabbit preparation have been obtained through pharmacological activation. This preparation appears to be a suitable model for the analysis of this cervical burst generator and for the study of interactions among the different pattern generators.
Keywords