On the Fundamental Existence Theorem of Kishi
- 1 December 1963
- journal article
- research article
- Published by Cambridge University Press (CUP) in Nagoya Mathematical Journal
- Vol. 23, 189-198
- https://doi.org/10.1017/s0027763000011259
Abstract
Let Ω be a locally compact Hausdorff space and G(x, y) be a strictly positive lower semicontinuous function on the product space Ω×Ω of Ω. Such a function G(x, y) is called a kernel on Ω. The adjoint kernel Ğ(x, y) of G(x, y) is defined by Ğ(x, y) =G(y, x). Whenever we say a measure on Ω, we mean a positive regular Borel measure on Ω. The potential Gμ(x) and the adjoint potential Ğμ(x) of a measure μ relative to the kernel G(x, y) is defined byrespectively. These are also strictly positive lower semicontinuous functions on Ω provided μ≠0.Keywords
This publication has 5 references indexed in Scilit:
- Maximum Principles in the Potential TheoryNagoya Mathematical Journal, 1963
- Note on Balayage and maximum principlesProceedings of the Japan Academy, Series A, Mathematical Sciences, 1963
- Zusatz und Berichtigung für meine Mitteilung ``Zum Beweis der Verallgemeinerung des Fixpunktsatzes'' in diesen Reports, Bd. 5, Nr. 1, 1953Kodai Mathematical Journal, 1954
- Measure TheoryPublished by Springer Nature ,1950
- A generalization of Brouwer’s fixed point theoremDuke Mathematical Journal, 1941