Dynamic Scheduling of a Four-Station Queueing Network

Abstract
This paper is concerned with the problem of optimally scheduling a multiclass open queueing network with four single-server stations in which dynamic control policies are permitted. Under the assumption that the system is heavily loaded, the original scheduling problem can be approximated by a dynamic control problem involving Brownian motion. We reformulate and solve this problem and, from the interpretation of the solution, we obtain two dynamic scheduling policies for our queueing network. We compare the performance of these policies with two static scheduling policies and a lower bound via simulation. Our results suggest that under either dynamic policy the system, at least when heavily loaded, exhibits the form of resource pooling given by the solution to the approximating control problem. Furthermore, even when lightly loaded the system performs better under the dynamic policies than under either static policy.

This publication has 11 references indexed in Scilit: