Dislocation dynamics during the growth of silicon ribbon

Abstract
The thermal viscoplastic stresses and the dislocation densities in silicon ribbon are computed for an axially changing thermal profile by using an iterative finite difference method. A material constitutive equation (Haasen–Sumino model) which involves an internal variable (mobile dislocation density) is used. The results are interpreted as showing that there is a maximum width of silicon ribbon that can be grown when viscoplasticity and dislocations are considered. This maximum width limitation does not exist if the material behavior is elastic.