Abstract
Bellhouse et al. (1973) have developed a high-efficiency membrane oxygenator which utilizes pulsatile flow through furrowed channels to achieve high mass transfer rates. We present numerical solutions of the time-dependent two-dimensional Navier–Stokes equations in order to show the structure of the flow. Experimental observations which support this work are presented in a companion paper (Stephanoff, Sobey & Bellhouse 1980).Steady flow through a furrowed channel will separate provided the Reynolds number is sufficiently large. The effect of varying the Reynolds number and the geometric parameters is given and comparisons with solutions calculated using the modern boundary-layer theory of Smith (1976) show excellent agreement. Unsteady flow solutions are given as the physical and geometric parameters are varied. The structure of the flow patterns leads to an explanation of the high efficiency of the devices of Bellhouse.

This publication has 8 references indexed in Scilit: