Kinetics of the coil-to-helix transition on a rough energy landscape

Abstract
The kinetics of folding of a fully atomic seven-residue polyalanine peptide in an implicit solvent are studied using molecular dynamics simulations. The use of an implicit solvent is found to dramatically increase the frustration of the energy landscape relative to simulations performed in an explicit solvent [Phys. Rev. Lett. 85, 2637 (2000)]. While the native state in both implicit and explicit solvent simulations is an α-helix, the kinetics of the coil-to-helix transition differ significantly. In contrast to the explicit solvent simulations, the native state in the implicit solvent simulations is not kinetically accessible at temperatures where it is thermodynamically stable and could not be brought into equilibrium with other conformational states. At temperatures where statistical equilibrium was achieved, the conformational diffusion folding mechanism, found earlier to be adequate for this peptide in an explicit solvent [Phys. Rev. Lett. 85, 2637 (2000)], is met with only limited success. Issues relating to the evaluation of the quality of implicit solvent models on the basis of thermodynamic criteria only are reexamined.