Pyrethroid resistance mechanisms in the head louse Pediculus capitis from Israel: implications for control
- 1 March 1999
- journal article
- research article
- Published by Wiley in Medical and Veterinary Entomology
- Vol. 13 (1) , 89-96
- https://doi.org/10.1046/j.1365-2915.1999.00141.x
Abstract
Summary: In Israel, the head louse, Pediculus capitis, developed resistance to DDT through the extensive use of this insecticide until the 1980s. In 1991, permethrin was introduced for control of DDT resistant P. capitis in Israel, leading to control failure of this pyrethroid insecticide by 1994. Pyrethroid resistance of P. capitis in Israel extends to phenothrin, which has not been used for louse control. We identified a glutathione S‐transferase(GST)‐based mechanism of DDT resistance in the Israeli head lice. This GST mechanism occurred before 1989, while permethrin resistance in P. capitis developed after 1994, suggesting that the main GST resistance mechanism selected by DDT use does not confer any pyrethroid cross‐resistance. Esterase activity levels were equivalent in pyrethroid resistant and susceptible P. capitis field‐collected in Israel, and in a susceptible strain of P.humanus, the body louse, indicating no involvement of any esterase‐based mechanism in resistance. A weak monooxygenase‐based permethrin metabolism resistance mechanism was the only factor identified which could account for any of the observed pyrethroid resistance in P. capitis. However, the lack of synergism of phenothrin resistance by piperonyl butoxide suggests that a non‐oxidative mechanism is also present in the resistant lice. Therefore it seems probable that pyrethroid resistance in Israeli P. capitis is due to a combination of nerve insensitivity (knockdown resistance or ‘kdr’) and monooxygenase resistance mechanisms.Keywords
This publication has 20 references indexed in Scilit:
- Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s.Insect Molecular Biology, 1998
- Purification and characterization of a major glutathione S-transferase from the mosquito Anopheles dirus (Species B)Insect Biochemistry and Molecular Biology, 1996
- Immunogenic proteins in the body and faecal material of the human body louse, Pediculus humanus, and their homology to antigens of other lice speciesMedical and Veterinary Entomology, 1996
- Kinetic and Molecular Differences in the Amplified and Non-amplified Esterases from Insecticide-resistant and Susceptible Culex quinquefasciatus MosquitoesPublished by Elsevier ,1995
- Permethrin resistance in the head louse Pediculus capitis from IsraelMedical and Veterinary Entomology, 1995
- DDT-resistance inAnopheles gambiae(Diptera: Culicidae) from Zanzibar, Tanzania, based on increased DDT-dehydrochlorinase activity of glutathione S-transferasesBulletin of Entomological Research, 1995
- Characterization and inheritance of elevated esterases in organophosphorus and carbamate insecticide resistant Culex quinquefasciatus (Diptera: Culicidae) from Sri LankaBulletin of Entomological Research, 1993
- Mechanisms of insecticide resistance inAedes aegypti(L.) (Diptera: Culicidae) from Puerto RicoBulletin of Entomological Research, 1989
- A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye BindingAnalytical Biochemistry, 1976
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochemistry, 1976