Hybrid Dysgenesis in D. melanogaster Is Not a General Release Mechanism for DNA Transpositions

Abstract
Many spontaneous mutations are caused by the insertion or excision of DNA elements. Since most mutations are deleterious, evolution should favor a mechanism for genetically controlling the rate of movement of transposable elements in most, if not all, organisms. In Drosophila melanogaster a syndrome of correlated genetic changes, including mutation, chromosome breakage, and sterility, is observed in the hybrid progeny of crosses between different strains. This syndrome, which is termed hybrid dysgenesis, results from the movement of P-DNA elements. What is not clear is whether the movement of other types of transposable elements is under the same coordinated control. In this study the ability of hybrid dysgenesis to increase the rate of excision of 12 DNA elements at 16 mutant alleles and to induce insertion-bearing mutations to change to other mutant states was tested. The data show that hybrid dysgenesis caused by P-element transpositions does not act as a general stimulus for the movement of other Drosophila transposable elements.