Use of a High-Resolution Model to Analyze the Mapping Capabilities of Multiple-Altimeter Missions

Abstract
The contribution of merging multiple-satellite altimeter missions to the mapping of sea level is analyzed from a North Atlantic high-resolution (1/10°) numerical simulation. The model is known to represent the mesoscale variability quite well and offers a unique opportunity for assessing the mapping capability of multiple-altimeter missions. Several existing or planned orbits [TOPEX/Poseidon (T/P), Jason-1, ERS-1/2–ENVISAT, GEOSAT-GFO] are analyzed, and Jason-1 and T/P orbits are assumed to be interleaved. The model sea level anomaly fields are first subsampled along T/P, ERS, GFO, and Jason-1 tracks and a random noise of 3-cm rms is added to the simulated altimeter data. A suboptimal mapping method is then used to reconstruct the 2D sea level anomaly from alongtrack data and the reconstructed fields are compared with the reference model fields. Comparisons are performed in the North Atlantic and over a complete year. These results confirm the main conclusions of the Le Traon and Dibarboure study... Abstract The contribution of merging multiple-satellite altimeter missions to the mapping of sea level is analyzed from a North Atlantic high-resolution (1/10°) numerical simulation. The model is known to represent the mesoscale variability quite well and offers a unique opportunity for assessing the mapping capability of multiple-altimeter missions. Several existing or planned orbits [TOPEX/Poseidon (T/P), Jason-1, ERS-1/2–ENVISAT, GEOSAT-GFO] are analyzed, and Jason-1 and T/P orbits are assumed to be interleaved. The model sea level anomaly fields are first subsampled along T/P, ERS, GFO, and Jason-1 tracks and a random noise of 3-cm rms is added to the simulated altimeter data. A suboptimal mapping method is then used to reconstruct the 2D sea level anomaly from alongtrack data and the reconstructed fields are compared with the reference model fields. Comparisons are performed in the North Atlantic and over a complete year. These results confirm the main conclusions of the Le Traon and Dibarboure study...