Proteolysis alters the spectral properties of 124 kdalton phytochrome from Avena
- 1 November 1982
- journal article
- research article
- Published by Springer Nature in Planta
- Vol. 156 (2) , 158-165
- https://doi.org/10.1007/bf00395430
Abstract
Native phytochrome from Avena sativa L. is homogeneous with a monomeric molecular weight of 124 kdalton; 6–10 kdalton larger than the heterogeneous “120” kdalton preparations previously considered to be undegraded (Vierstra and Quail, 1982, Proc. Natl. Acad. Sci. USA, 79: 5272–5276). The phototransformation difference spectrum (Pr-Pfr) of 124 kdalton phytochrome measured in crude extracts has a minimum in the farred region at 730 nm, the same as that observed in vivo. These spectral properties contrast with those of “120” kdalton phytochrome purified by column immunoaffinity chromatography where the difference minimum is at 724 nm. When 124 kdalton phytochrome is incubated as Pr in crude extracts, the difference minimum shifts progressively to shorter wavelengths (from 730 to 722 nm) concomitant with the proteolytic degradation of the chromoprotein to the mixture of 118 and 114 kdalton species that comprise “120” kdalton phytochrome preparations. These two effects are inhibited in concert by the serine protease inhibitor, phenylmethylsulfonylfluoride, and or maintenance of the phytochrome in the Pfr form. These results provide further evidence that 124 kdalton phytochrome is the native molecule in Avena and indicate that the peptide segments removed by proteolysis of the Pr form are important to the pigment's spectral integrity. The present data thus resolve the previously unsettled question of why the Pfr form of “120” kdalton phytochrome isolated by various procedures from Avena has been found to absorb at shorter wavelengths than that observed in vivo. Previous spectral studies with “120” kdalton phytochrome preparations are open to reexamination.Keywords
This publication has 22 references indexed in Scilit:
- PHOTOTRANSFORMATION KINETICS OF UNDEGRADED OAT AND PEA PHYTOCHROME INITIATED BY LASER FLASH EXCITATION OF THE RED‐ABSORBING FORMPhotochemistry and Photobiology, 1981
- Purification of Phytochrome by Affinity Chromatography on Agarose-Immobilized Cibacron Blue 3GAPlant Physiology, 1981
- Phytochrome Immunoaffinity PurificationPlant Physiology, 1979
- A far-red form of phytochrome exhibiting in vivo spectral properties: Studies with crude extracts of oats and squashPlant Science Letters, 1977
- Purification of Oat and Rye PhytochromePlant Physiology, 1973
- Partial Characterization of Oat and Rye PhytochromePlant Physiology, 1973
- The Dark Reactions of Rye Phytochrome in Vivo and in VitroPlant Physiology, 1972
- Partial Purification and Characterization of a Phytochrome-degrading Neutral Protease from Etiolated Oat ShootsPlant Physiology, 1972
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970
- Some Spectral Properties of Pea Phytochrome in Vivo and in VitroPlant Physiology, 1970