Mapping of Familial Thoracic Aortic Aneurysm/Dissection With Patent Ductus Arteriosus to 16p12.2–p13.13

Abstract
Background— Three loci have been shown to be responsible for nonsyndromic familial thoracic aortic aneurysms (TAAs) and aortic dissections (ADs). We recently described a large family in which TAA/AD associates with patent ductus arteriosus (PDA) and provided genetic arguments for a unique pathophysiological entity. Methods and Results— Genome-wide scan was performed in 40 subjects belonging to 3 generations in this large pedigree. Using the 7 TAA/AD cases as affected, we observed positive 2-point LOD scores on adjacent markers at chromosome 16p, with a maximum LOD score value of 2.73 at θ=0, a value that increased to 3.56 when 5 PDA cases were included. Multipoint linkage analysis yielded a maximum LOD score of 4.14 in the vicinity of marker D16S3103 . Fine mapping allowed the observation of recombinant haplotypes that delimited a critical 20-cM interval at 16p12.2-p13.13. Automatic determination of aortic compliance with cine MRI showed that all subjects bearing the disease haplotype, even asymptomatic, displayed a very low level of aortic compliance and distensibility. Aortic stiffness was strongly associated with disease haplotype with a marked effect of age, indicating subclinical and early manifestation of the disease. Conclusions— Genetic analysis of this family identified a unique locus responsible for both TAA/AD and PDA at chromosome 16p12.2-p13.13 with aortic stiffness as an early hallmark of the disease. TAA/AD with PDA is a new monogenic entity among the genetically heterogeneous group of TAA/AD disease.