Electric field induced instabilities at liquid/liquid interfaces

Abstract
External electric fields were used to amplify thermal fluctuations at the interface between two thin liquid films. Similar to the results shown previously for the enhancement of fluctuations at the polymer/air interface, interfacial fluctuations having a well-defined wavelength were enhanced with a characteristic growth rate. A simple theoretical framework to describe the experimental observations is presented. Both experiment and model calculation show a substantial reduction in feature size as a result of the change in surface/interfacial energy when going from the thin film to the bilayer case. Experimentally, features develop nearly 50 times faster for the bilayers in comparison to the polymer/air case. These results point to a simple route by which the nanoscopic feature can be easily and rapidly produced or replicated.