Natural Antitumor Defense System of the Murine Liver

Abstract
Murine nonparenchymal liver cells from various genetic strains isolated by collagenase digestion and differential sedimentation contain both lymphocytes and macrophages. Nonparenchymal liver cells as well as spleen cells, mononuclear blood cells, and peritoneal exudate cells from C3HeB/FeJ mice were tested for natural cytotoxicity against YAC-1 (sensitive to NK cells) and P815 (resistant to NK cells) tumor cell lines. Resident peritoneal exudate cells exerted no cytotoxicity against either tumor cell, whereas spleen and mononuclear blood cells lysed only YAC-1. In contrast, nonparenchymal liver cells lysed both YAC-1 (4 h) and P815 (18 h) tumor cells. Treatment of nonparenchymal liver cells with anti-asialo GM1 and complement abolished the antitumor activity against both tumor cell lines but not the phagocytic activity. Nonadherent nonparenchymal liver cells exerted greater cytotoxicity against YAC-1 tumor cells but little cytotoxicity against P815 tumor cells when compared with unfractionated cells. Adherent nonparenchymal liver cells (macrophages) from untreated mice exerted no antitumor activity against either tumor cell. In contrast, adherent nonparenchymal liver cells from Coryn- ebacterium parvum treated mice were directly cytotoxic to P815 tumor cells. Spleen cells that are normally not cytotoxic to P815 tumor cells (18 h) became cytotoxic when mixed with adherent nonparenchymal liver cells from untreated mice. These results indicate that the tumoricidal effector cell in nonparenchymal liver cells from untreated mice appears to be the NK cell. Apparently, murine liver marophages from untreated mice do not have tumoricidal activity per se but can “activate” NK cells to kill tumor cells normally resistant to NK cells.