Abstract
This paper presents the architecture, implementation, and performance results for the SGI Challenge symmetric multiprocessor system. Novel aspects of the architecture are highlighted, as well as key design trade-offs targeted at increasing performance and reducing complexity. Multiprocessor design verification techniques and their impact is also presented. The SGI Challenge system architecture provides a high-bandwidth, low-latency cache-coherent interconnect for several high performance processors, I/O busses, and a scalable memory system. Hardware cache coherence mechanisms maintain a consistent view of shared memory for all processors, with no software overhead and minimal impact on processor performance. HDL simulation with random, self checking vector generation and a lightweight operating system on full processor models contributed to a concept to customer shipment cycle of 26 months.

This publication has 5 references indexed in Scilit: