Beatty Sequences, Continued Fractions, and Certain Shift Operators
- 1 December 1976
- journal article
- Published by Canadian Mathematical Society in Canadian Mathematical Bulletin
- Vol. 19 (4) , 473-482
- https://doi.org/10.4153/cmb-1976-071-6
Abstract
Let θ = θ(k) be the positive root of θ2 + (k-2)θ-k = 0. Let f(n) = [(n + l)θ]-[nθ] for positive integers n, where [x] denotes the greatest integer in x. Then the elements of the infinite sequence (f(l), f(2), f(3),…) can be rapidly generated from the finite sequence (f(l), f(2),…,f(k)) by means of certain shift operators. For k = 1 we can generate (the characteristic function of) the sequence [nθ] itself in this manner.Keywords
This publication has 26 references indexed in Scilit:
- Further characterizations and properties of exactly covering congruencesDiscrete Mathematics, 1975
- Some Generalizations of Wythoff's Game and Other Related GamesMathematics Magazine, 1968
- Generalization of a Bracket Function Formula of L. MoserCanadian Mathematical Bulletin, 1963
- On A Theorem of UspenskyThe American Mathematical Monthly, 1963
- A Set Containing all IntegersThe American Mathematical Monthly, 1962
- On certain distributions of integers in pairs with given differencesMATHEMATICA SCANDINAVICA, 1957
- Inverse and Complementary Sequences of Natural NumbersThe American Mathematical Monthly, 1954
- The Sum of the Integral Parts in an Arithmetical ProgressionThe Mathematical Gazette, 1952
- Ein Satz über Teilfolgen der Reihe der natürlichen ZahlenMathematische Annalen, 1938
- Sur une question de Jean BernoulliMathematische Annalen, 1881