Steady-state solutions for the penetration of a rotating magnetic field into a plasma column

Abstract
The penetration of an externally applied rotating magnetic field into a plasma cylinder is examined. Steady-state solutions of an appropriate set of magneto-fluid equations show that, provided the amplitude and rotation frequency of the field are suitably chosen, the penetration is not limited by the usual classical skin effect. The enhanced penetration of the rotating field is accompanied by the generation of a unidirectional azimuthal electron current which is totally absent in a purely resistive plasma cylinder.