Substituent Effects on the Antibacterial Activity of Nitrogen−Carbon-Linked (Azolylphenyl)oxazolidinones with Expanded Activity Against the Fastidious Gram-Negative Organisms Haemophilus influenzae and Moraxella catarrhalis
Top Cited Papers
- 17 February 2000
- journal article
- research article
- Published by American Chemical Society (ACS) in Journal of Medicinal Chemistry
- Vol. 43 (5) , 953-970
- https://doi.org/10.1021/jm990373e
Abstract
A series of new nitrogen−carbon-linked (azolylphenyl)oxazolidinone antibacterial agents has been prepared in an effort to expand the spectrum of activity of this class of antibiotics to include Gram-negative organisms. Pyrrole, pyrazole, imidazole, triazole, and tetrazole moieties have been used to replace the morpholine ring of linezolid (2). These changes resulted in the preparation of compounds with good activity against the fastidious Gram-negative organisms Haemophilusinfluenzae and Moraxellacatarrhalis. The unsubstituted pyrrolyl analogue 3 and the 1H-1,2,3-triazolyl analogue 6 have MICs against H. influenzae = 4 μg/mL and M. catarrhalis = 2 μg/mL. Various substituents were also placed on the azole moieties in order to study their effects on antibacterial activity in vitro and in vivo. Interesting differences in activity were observed for many analogues that cannot be rationalized solely on the basis of sterics and position/number of nitrogen atoms in the azole ring. Differences in activity rely strongly on subtle changes in the electronic character of the overall azole systems. Aldehyde, aldoxime, and cyano azoles generally led to dramatic improvements in activity against both Gram-positive and Gram-negative bacteria relative to unsubstituted counterparts. However, amide, ester, amino, hydroxy, alkoxy, and alkyl substituents resulted in no improvement or a loss in antibacterial activity. The placement of a cyano moiety on the azole often generates analogues with interesting antibacterial activity in vitro and in vivo. In particular, the 3-cyanopyrrole, 4-cyanopyrazole, and 4-cyano-1H-1,2,3-triazole congeners 28, 50, and 90 had S. aureus MICs ≤ 0.5−1 μg/mL and H. influenzae and M. catarrhalis MICs = 2−4 μg/mL. These analogues are also very effective versus S. aureus and S. pneumoniae in mouse models of human infection with ED50s in the range of 1.2−1.9 mg/kg versus 2.8−4.0 mg/kg for the eperezolid (1) control.Keywords
This publication has 27 references indexed in Scilit:
- Multidrug-Resistant Enterococcus faeciumDrugs, 1994
- N‐1 Substituted ethyl 4‐pyrazolecarboxylates: Synthesis and spectroscopic investigationsJournal of Heterocyclic Chemistry, 1993
- Synthesis of 5,6‐dihydro‐4H‐pyrrolo[1,2‐a]thieno[2,3‐f][1,4]diazepinesJournal of Heterocyclic Chemistry, 1991
- Synthetic reactions in polyethylene glycol. Diazotization and sandmeyer reactions of anilines in polyethylene glycol–methylene dichlorideJournal of the Chemical Society, Chemical Communications, 1984
- New preparations of ethyl 3,3-diethoxypropionate and ethoxycarbonylmalondialdehyde. Copper(I) catalyzed acetal formation from a conjugated triple bondThe Journal of Organic Chemistry, 1982
- A New Synthesis of 1-Aryl-1H-1, 2, 4-triazole-3-carboxylic Acid EstersSynthesis, 1975
- Synthesis of s-triazole[3,4-b]benzothiazolesThe Journal of Organic Chemistry, 1974
- Reactions with the Arylhydrazones of some α‐cyanoketonesJournal für Praktische Chemie, 1973
- Rearrangements in the 1,2,4‐oxadiazole series. IV. Conversion of N‐(1,2,4‐oxadiazol‐3‐yl)‐N'‐arylformamidines into 3‐acylamino‐1‐aryl‐1,2,4‐triazolesJournal of Heterocyclic Chemistry, 1971
- Enoläther, VI. Synthesen mit β‐Äthoxy‐acrylsäurechloridenEuropean Journal of Inorganic Chemistry, 1969