The experimental realizations of degenerate Bose and Fermi atomic samples have stimulated a new wave of studies of quantum many-body systems in the dilute and weakly interacting regime. The intriguing prospective of extending these studies into the domain of strongly correlated phenomena is hindered by the apparent relative weakness of atomic interactions. The effects due to interactions can, however, be enhanced if the atoms are confined in optical potentials created by standing light waves. The present letter shows that these techniques, when applied to ensembles of cold fermionic atoms, can be used to dramatically increase the transition temperature to a superfluid state and thus make it readily observable under current experimental conditions. Depending upon carefully controlled parameters, a transition to a superfluid state of Cooper pairs, antiferromagnetic states or more exotic d-wave pairing states can be induced and probed. The results of proposed experiments can provide a critical insight into the origin of high-temperature superconductivity in cuprates.