Interfacial Reactivity of Monolayer-Protected Clusters Studied by Scanning Electrochemical Microscopy

Abstract
Solutions of monodisperse monolayer-protected clusters (MPCs) of gold can be used as multivalent redox mediators in electrochemical experiments due to their quantized double-layer charging properties. We demonstrate their use in scanning electrochemical microscopy (SECM) experiments wherein the species of interest (up to 2-electron reduction or 4-electron oxidation from the native charge-state of the MPCs) is generated at the tip electrode, providing a simple means to adjust the driving force of the electron transfer (ET). Approach curves to perfectly insulating (Teflon) and conducting (Pt) substrates are obtained. Subsequently, heterogeneous ET between MPCs in 1,2-dichloroethane and an aqueous redox couple (Ce(IV), Fe(CN)63-/4-, Ru(NH3)63+, and Ru(CN)64-) is probed with both feedback and potentiometric mode of SECM operation. Depending on the charge-state of the MPCs, they can accept/donate charge heterogeneously at the liquid−liquid interface. However, this reaction is very slow in contrast to ET involving MPCs at the metal−electrolyte interface.

This publication has 24 references indexed in Scilit: